题目描述
马上就要跨年了,祝大家新年快乐!
个“648"(假设全是首充福利,1个648 相当于12960个原石),所以想问你,他能否抽到满命雷神。
输入描述
,代表初始小明的原石数量,
第二行,$a_1,a_2,a_3...a_{14}$,总共个数,代表接下来的 $14$ 次出金每次需要多少抽,$1\le a_i\le 91$,$1\le i \le14$。
第三行,$b_1,b_2,b_3...b_{14}$,个数,代表接下来的 $14$ 其中$0$表示歪常驻(即没抽到$up$金雷神),$1$表示抽到雷神。
注意:小明手中的原石数量并不能保证他抽出14次金。
输出描述
如果能够抽到满命雷神(7个即为满命),就输出"happy year!"(不加引号)。
如果不能,则输出能抽到的雷神数量$ans$,$0 \le ans \le 6$。
尽量把原石用完。
样例输入
2622 5 61 87 70 76 82 78 79 75 81 87 81 76 73 74 0 1 0 1 0 1 1 0 1 0 1 1 0 1
样例输出
2
提示
样例解释: 刚开始原石数量为 2622 + 5 * 6480 * 2 = 67422 ,总共可以抽$[\frac{67422}{1600}] = 421$。$[\frac{a}{b}]$表示向 a 除以 b 向下取整 第一个金 61 抽,无雷神。 第二个金总共 61 + 87 = 148 抽,有雷神。 第三个金总共 148 + 70 = 218 抽,无雷神。 第四个金总共 218 + 76 = 294 抽,有雷神。 第五个金总共 294 + 82 = 376 抽,无雷神。 第六个金总共 需要 376 + 78 = 454 抽,不够。 故总共两只雷神。 每160个原石即可抽一次卡池。 卡池保底机制: 小保底:指90抽之内必出金,但有可能是常驻金或者是up金(这里是雷神)。 大保底:指小保底出了常驻后,这一次保底一定是up金(雷神)。 重置:每次抽中金就会重置为0次。 满命:即抽出7个相同角色。
来源
2023跨年赛